N₂ Electrochemical Reduction

Achieving a Record-High Yield Rate of 120.9 μ g_{NH₃} mg⁻¹_{cat.} h⁻¹ for N₂ Electrochemical Reduction over Ru Single-Atom Catalysts

Zhigang Geng, Yan Liu, Xiangdong Kong, Pai Li, Kan Li, Zhongyu Liu, Junjie Du, Miao Shu, Rui Si,* and Jie Zeng*

The electrochemical reduction of N₂ into NH₃ production under ambient conditions represents an attractive prospect for the fixation of N₂. However, this process suffers from low yield rate of NH₃ over reported electrocatalysts. In this work, a record-high activity for N₂ electrochemical reduction over Ru single atoms distributed on nitrogen-doped carbon (Ru SAs/N-C) is reported. At -0.2 V versus reversible hydrogen electrode, Ru SAs/N-C achieves a Faradaic efficiency of 29.6% for NH₃ production with partial current density of -0.13 mA cm⁻². Notably, the yield rate of Ru SAs/N-C reaches 120.9 μ g_{NH₃} mg⁻¹_{cat.} h⁻¹, which is one order of magnitude higher than the highest value ever reported. This work not only develops a superior electrocatalyst for NH₃ production, but also provides a guideline for the rational design of highly active and robust single-atom catalysts.

Nitrogen is an essential building element for biomolecules such as proteins, nucleotides, and other biological compounds in plants and animals.^[1–3] Although molecular nitrogen (N₂) is the major component on earth (78% in the atmosphere), it is nutritionally unavailable due to the highly stable N \equiv N covalent triple bond with the bond energy of 940.95 kJ mol⁻¹.^[4–6] As such, high pressure and temperature (150–350 atm, 350–550 °C) are required to convert N₂ to available nitrogen-containing compounds such as NH₃ through Haber–Bosch process in industry.^[7–10] The harsh condition of Haber–Bosch process

DOI: 10.1002/adma.201803498

results in 1–2% of the world's annual energy supply consumption.^[11,12] Moreover, the NH₃ synthesis through Haber–Bosch process requires hydrogen gas as source, which is generated from the steam reforming of natural gas with a large concomitant emission of CO_2 .^[13,14] In view of the fossil fuels shortage and global climate change, it is highly desired to explore a catalytic process that produces NH₃ using N₂ and earth-abundant hydrogen sources under ambient conditions.

Recently, a variety of sustainable routes for fixing N_2 to NH_3 have been developed by using biological nitrogenase, $^{[15]}$ photocatalysis, $^{[16]}$ and electrocatalysis. $^{[17-20]}$ As a strategy of

NH₃ synthesis under the ambient reaction condition, electrochemical reduction of N₂ into NH₃ has attracted particular attention, because this process utilizes H₂O as hydrogen source and can be facilely controlled by altering the applied electrode potential. Thanks to the tremendous efforts from many research groups, numerous catalysts such as Ru,^[18] Au,^[21–23] poly(N-ethyl-benzene-1,2,4,5-tetracarboxylic diimide) with Li⁺ incorporation,^[24] N-doped porous carbon,^[25] and Fe₂O₃/carbon nanotube^[26] have been developed for N₂ electrochemical reduction. However, to date, the highest NH₃ yield rate among the reported electrocatalysts was only 23.8 μ g_{NH3} mg⁻¹_{cat} h⁻¹ toward N₂ electrochemical reduction.^[25] Therefore, the development of highly active electrocatalysts for NH₃ production is desirable but remains challenging.

Herein, we developed Ru single atoms on nitrogen-doped carbon (denoted as Ru SAs/N-C) which achieved record-high activity toward N₂ electrochemical reduction. At –0.2 V versus reversible hydrogen electrode (RHE), Ru SAs/N-C exhibited a Faradaic efficiency (FE) of 29.6% for NH₃ production with partial current density of –0.13 mA cm⁻². Notably, the yield rate of Ru SAs/N-C reached 120.9 μ g_{NH₃} mg⁻¹_{cat} h⁻¹, which was one order of magnitude higher than the highest value ever reported. Moreover, Ru SAs/N-C also held high catalytic stability toward N₂ electrochemical reduction at different applied potentials.

Typically, Ru SAs/N-C was prepared via pyrolyzing the Ru-containing derivative of zeolitic imidazolate frameworks (ZIF-8). The synthetic procedure of Ru SAs/N-C is illustrated

Dr. Z. Geng, Y. Liu, X. Kong, Dr. P. Li, K. Li, Z. Liu, J. Du, Prof. J. Zeng Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences Department of Chemical Physics University of Science and Technology of China Hefei, Anhui 230026, P. R. China E-mail: zengj@ustc.edu.cn M. Shu, Prof. R. Si Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204, P. R. China E-mail: sirui@sinap.ac.cn

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.201803498.

Figure 1. a) Scheme of the synthetic procedure for Ru SAs/N-C. b) A typical SEM image, c) TEM image, d) magnified TEM image, e) HAADF-STEM image, and f) magnified HAADF-STEM image of Ru SAs/N-C. g) HAADF-STEM image and corresponding EDS elemental mapping results for Ru SAs/N-C.

in Figure 1a. The Ru-containing derivative of ZIF-8 was synthesized through the standard synthetic route of ZIF-8 except for partial substitution of Zn(NO₃)₂ with Ru(acac)₃.^[27,28] As shown in Figure S1 (Supporting Information), the derivative of ZIF-8 exhibited homogeneous rhombododecahedral morphology with an average size of 60 nm. After the derivative was pyrolyzed under N₂ flow at 900 °C for 3 h, Ru SAs/N-C was obtained. The Ru mass loading was determined to be 0.18% by inductively coupled plasma atomic emission spectroscopy (ICP-AES). As shown in the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of Ru SAs/N-C, the original structure shrank into porous irregular rhombododecahedrons with an average size of 40 nm after pyrolysis process (Figure 1b-d). The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image and magnified HAADF-STEM image of Ru SAs/N-C demonstrate that individual Ru atoms were uniformly dispersed (Figure 1e,f). The HAADF-STEM image and the corresponding energy-dispersive X-ray spectroscopy (EDS) elemental mapping show the homogeneous distribution of the C, N, and Ru elements throughout the whole structure (Figure 1g). For comparison, we also prepared Ru nanoparticles on the nitrogen-doped carbon (denoted as Ru NPs/N-C) with the Ru loading of 2.64% by increasing the molar ratio of Ru(acac)₃/ $Zn(NO_3)_2$ to 1:1. The TEM image indicates that the average size of Ru nanoparticles in Ru NPs/N-C was 3.5 nm (Figure S2, Supporting Information).

To investigate the structures and compositions of Ru SAs/N-C and Ru NPs/N-C, we conducted a series of characterizations, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman measurements. **Figure 2a** shows the XRD spectra of Ru SAs/N-C and Ru NPs/N-C. Both Ru SAs/N-C and Ru NPs/N-C exhibited two broad peaks at 24.1° and 43.3° which were attributed to the (002) and (101) facets of graphite carbon, respectively (Figure S3, Supporting Information). The diffraction peaks of Ru NPs/N-C were well indexed to a hexagonal-close-packed crystal structure of Ru (JCPDS No. 06-0663). By contrast, the characteristic peak of Ru crystals disappeared in the XRD pattern of Ru SAs/N-C, further demonstrating the absence of Ru nanoparticles in Ru SAs/N-C. The XPS spectrum of Ru SAs/N-C and Ru NPs/N-C showed no peaks for Zn 2p, demonstrating that Zn²⁺ species in derivative

SCIENCE NEWS _____ www.advancedsciencenews.com

DVANCED

Figure 2. a) XRD patterns of Ru SAs/N-C and Ru NPs/N-C. XPS spectra of the b) N 1s and c) Ru 3p_{3/2} for Ru SAs/N-C and Ru NPs/N-C. d) Ru K-edge XANES spectra and e) EXAFS spectra for Ru SAs/N-C, Ru NPs/N-C, RuO₂, Ru(acac)₃, and Ru foil. f) EXAFS fitting curve for Ru SAs/N-C.

of ZIF-8 were evaporated during the pyrolysis process (Figure S4, Supporting Information).^[29] In N 1s spectra of Ru SAs/N-C and Ru NPs/N-C, three peaks at 398.6, 400.2, and 401.1 eV were assigned to pyridinic N, pyrrolic N, and graphitic N, respectively (Figure 2b).^[30] Meanwhile, the C-N peak at 286.5 eV were clearly recorded in C 1s spectra of Ru SAs/N-C and Ru NPs/N-C (Figure S5, Supporting Information). The XPS results indicate that the organic linkers in the derivative of ZIF-8 were transformed into nitrogen-doped carbon. Moreover, the Ru 3p_{3/2} peaks of Ru SAs/N-C and Ru NPs/N-C were located at 463.2 and 461.6 eV, which were attributed to the oxidized and metallic Ru, respectively (Figure 2c).^[31] The defect structure of nitrogen-doped carbon in Ru SAs/N-C and Ru NPs/N-C was further investigated by Raman spectra. As shown in Figure S6 (Supporting Information), two peaks at 1350 and 1580 cm⁻¹ corresponded to D band and G band of graphite carbon, respectively.^[32] The intensity ratio of D band to G band (I_D/I_G) for Ru SAs/N-C was 1.01, which was similar to that (1.02) for Ru NPs/N-C. Accordingly, the frame of porous carbon in both samples possessed the similar degree of disorder for sp² carbon.

To further investigate the electronic and coordination structures of Ru SAs/N-C and Ru NPs/N-C, we conducted the X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Figure 2d shows the Ru K-edge XANES profiles for Ru SAs/N-C, Ru NPs/N-C, RuO₂, Ru(acac)₃, and Ru foil. Ru SAs/N-C exhibited the similar energy absorption edge profiles with that of Ru(acac)₃ (Ru³⁺) in a range between 22 110 and 22 130 eV. Moreover, we have further conducted the derivative profiles for XANES of Ru SAs/N-C, Ru NPs/N-C, RuO₂, Ru(acac)₃, and Ru foil. As shown in Figure S7 (Supporting Information), the derivative profile for XANES of Ru SAs/N-C exhibited a similar pre-edge structure ranging from 22 112 to 22 121 eV with that of Ru(acac)₃. The maximum XANES slopes

of both Ru SAs/N-C and Ru(acac)₃ were located at 22 129 eV. Therefore, the valence state of Ru species in Ru SAs/N-C was ≈+3. In contrast, the energy absorption edge profile of Ru NPs/N-C matched well with that of the Ru foil, demonstrating the metallic Ru species in Ru NPs/N-C. As shown in Figure 2e, EXAFS spectra for Ru SAs/N-C exhibited only a prominent peak at ≈2.04 Å which was attributed to Ru–N bonds. No significant contribution for metallic Ru and oxidized Ru_xO_y clusters was observed at longer distance above 2.50 Å, revealing the dispersion of isolated Ru atoms throughout the whole Ru SAs/N-C structure. As for Ru NPs/N-C, a typical peak located at 2.70 Å was observed, implying the formation of a Ru-Ru metallic bond. To further obtain the structure parameters of Ru in Ru SAs/N-C, we conducted a least-squares EXAFS fitting. When the EXAFS fitting parameter of the bond length was set to 2.04 Å with the coordination number of \approx 3.4 (Table S1, Supporting Information), the fitting curve of Ru SAs/N-C perfectly matched with the EXAFS result (Figure 2f). Based on the above analysis, the Ru atom in Ru SAs/N-C was coordinated by N atoms.

To evaluate the electrochemical activity over Ru SAs/N-C and Ru NPs/N-C toward N₂ electrochemical reduction, we tested the cyclic voltammetry (CV) curves of Ru SAs/N-C and Ru NPs/N-C in both N₂-saturated and Ar-saturated 0.05 M H₂SO₄ electrolyte (Figure S8, Supporting Information). For Ru SAs/N-C, the current density in N₂-saturated electrolyte was higher than that in Ar-saturated electrolyte at the potential ranging from -0.15 to -0.50 V versus RHE, indicating that Ru SAs/N-C possessed catalytic activity toward N₂ electrochemical reduction. At the potential below -0.50 V versus RHE, the current density of Ru SAs/N-C in N₂-saturated electrolyte approximated to that in Ar-saturated electrolyte with the divergence below 0.09 mA cm⁻². In this case, the hydrogen evolution reaction became the primary process. By contrast, Ru NPs/N-C exhibited similar CV curves in both N₂-saturated and

Figure 3. a) Current densities for NH_3 production. b) FE and c) yield rate of NH_3 production at different applied potentials on Ru SAs/N-C and Ru NPs/N-C. d) 12 h durability test for Ru SAs/N-C toward N_2 electrochemical reduction at -0.2 V versus RHE.

Ar-saturated electrolytes, suggesting the low catalytic activity toward N₂ electrochemical reduction. The catalytic performance of Ru SAs/N-C and Ru NPs/N-C was further tested in N₂-saturated 0.05 M H₂SO₄ electrolyte toward N₂ electrochemical reduction. After a 12 h test for Ru SAs/N-C at -0.2 V versus RHE, the electrolyte was qualitatively detected by the Fourier transform infrared (FTIR) spectroscopy. As shown in Figure S9 (Supporting Information), the characteristic peak at 1450 cm⁻¹ for NH₄⁺ deformational vibration was observed, indicating the generation of NH3 over Ru SAs/N-C during N2 electrochemical reduction.^[33] The concentration of NH4⁺ was also quantified via a calibrated indophenols blue method, which was in good agreement with the result determined by ion chromatography (Figures S10 and S11, Supporting Information). The production of hydrazine was below the detection limit, indicating the high selectivity for NH3 over Ru SAs/N-C and Ru NPs/N-C (Figure S12, Supporting Information). Figure 3a shows the partial current density of Ru SAs/N-C and Ru NPs/N-C for NH3 production. At all applied potentials, Ru SAs/N-C exhibited higher partial current density for NH₃ production than that of Ru NPs/N-C. Typically, at -0.2 V versus RHE, the partial current density of Ru SAs/N-C for NH₃ production reached -0.13 mA cm⁻², which was approximately twice that of Ru NPs/N-C. In addition, the FE of Ru SAs/N-C for NH₃ production was higher than that of Ru NPs/N-C at all applied potentials (Figure 3b). Remarkably, the FE of Ru SAs/N-C for NH₃ production reached 29.6% at -0.2 V versus RHE, which was 2.1-fold higher than that of Ru NPs/N-C. Moreover, we normalized the yield rate of NH₃ production based on the weight of catalysts. At -0.2 V versus RHE, Ru SAs/N-C exhibited a record-high yield rate of 120.9 $\mu g_{NH_3} m g_{cat.}^{-1} h^{-1}$ for NH₃ production (Figure 3c). Notably, such value is more than one order of magnitude higher than that of other electrocatalysts under the near-ambient conditions for NH_3 production up to date (Table 1).

To verify that NH₃ production over Ru SAs/N-C and Ru NPs/N-C was generated via N2 electrochemical reduction process, we performed a series of control experiments. When the reaction proceeded in an Ar-saturated electrolyte at -0.2 V versus RHE for 2 h, the yields of NH₃ production for Ru SAs/N-C and Ru NPs/N-C were below detection limit (Figure S13, Supporting Information). As such, the NH₃ production did not derive from the self-electrolysis of catalysts. When Ru SAs/N-C was conducted in N2-saturated 0.05 м H2SO4 electrolyte at open-circuit, no NH₃ production was detected, indicating the absence of NH₃ impurity in N₂ gas (Figure S13, Supporting Information). We also conducted the N2 electrochemical reduction over pyrolyzed ZIF-8 to exclude the catalytic performance of nitrogen-doped carbon in Ru SAs/N-C (Figure S14, Supporting Information). At -0.2 V versus RHE, the pyrolyzed ZIF-8 exhibited a poor FE of 0.4% for NH₃ production with a low yield rate of 5.2 μg_{NH_3} mg⁻¹_{cat.} h⁻¹. As such, Ru single atoms in Ru SAs/N-C served as the active sites for N₂ electrochemical reduction. To confirm the origination of NH₃ production, we conducted an isotopic labeling experiment using ¹⁵N₂ as the feeding gas. A distinguishable chemical shift of doublet coupling was attributed to ¹⁵N in ¹⁵NH₄⁺ determined by ¹H NMR spectra (Figure S15, Supporting Information).^[24] Therefore, the NH₃ production derived from N₂ electrochemical reduction. To explore the effect of the electrolyte, we measured CV curves in 0.05 м Na₂SO₄ and 0.1 м KOH electrolyte for both Ru SAs/N-C and Ru NPs/N-C. For Ru SAs/N-C, the current density in N2-saturated electrolyte was higher than that in Ar-saturated electrolyte at the potential ranging from -0.15 to -0.50 V versus

DVANCED IENCE NEWS www.advancedsciencenews.com

Yield rate Electrolyte Potential Ref Area activity $[\mu g_{NH_3} \text{ cm}^{-2} \text{ h}^{-1}]$ Mass activity $[\mu g_{NH_3} m g_{cat.}^{-1} h^{-1}]$ 2 м КОН -1.1 V versus Ag/AgCl 0.21 [18] 0.1 M HCl -0.2 V versus RHE 83 [21] 0.1 м КОН -0.2 V versus RHE 1.65 [22] 0.1 м HCl -0.2 V versus RHE 21.4 [23]

Catalyst Ru/C Au/CeO_x-RGO Au nanorods Au cluster/TiO₂ PEBCD/C 0.5 м Li₂SO₄ -0.7 V versus RHE 2.01 [24] -0.9 V versus RHF N-doped porous carbon 0.05 M H₂SO4 9 4 7 238 [25] Fe₂O₃-CNT Diluted KHCO₃ -2.0 V versus Ag/AgCl 0.22 [26] Ru SAs/N-C 0.05 м H₂SO₄ 30.84 120.9 -0.2 V versus RHE This work

Table 1. Comparison of the N_2 electrochemical reduction activity for Ru SAs/N-C with other catalysts under near-ambient conditions.

RHE, irrespective of H₂SO₄, Na₂SO₄, and KOH solutions (Figure S16, Supporting Information). In addition, Ru NPs/N-C exhibited similar CV curves in N2-saturated and Ar-saturated electrolyte regardless of different solutions. As shown in Figure S17 (Supporting Information), the FE of NH₃ production for Ru SAs/N-C in Na2SO4 and KOH solution was 29.1 and 29.4%, respectively, approximating to that (29.6%) in H₂SO₄ solution at -0.2 V versus RHE, while the divergence of FE in three types of solutions was within the error for Ru NPs/N-C. Therefore, the electrolyte solution was not critical in our work. We further calculated the turnover frequency (TOF) numbers of Ru SAs/N-C and Ru NPs/N-C based on the surface Ru atoms (Figure S18, Supporting Information). Notably, the TOF number of Ru SAs/N-C was 376 h⁻¹, which was about ten times larger than that (35 h^{-1}) of Ru NPs/N-C at -0.2 V versus RHE. In addition, the durability of Ru SAs/N-C was tested by scanning at a constant potential of -0.2 V versus RHE for 12 h (Figure 3d). Ru SAs/N-C exhibited less than 7% decay of yield rate for NH₃ production during a 12 h potentiostatic test (Figure S19, Supporting Information). After the electrolvsis, the Ru single atoms were still atomically dispersed on the nitrogen-doped carbon (Figure S20, Supporting Information).

The intrinsic reason of high catalytic performance for Ru SAs/N-C was further investigated. We conducted N2 temperature-programmed desorption (N₂-TPD) for Ru SAs/N-C and Ru NPs/N-C. As shown in Figure 4a, both Ru SAs/N-C and Ru NPs/N-C exhibited a peak at 196 °C, which was attributed to the chemical adsorption of N2 on pyrolyzed ZIF-8 (Figure S21, Supporting Information). The other desorption peak for Ru SAs/N-C was located at 340 °C, which was assigned to the chemical adsorption of N₂ on Ru species. By comparison, the peak for N2 chemical adsorption was located at 271 °C for Ru NPs/N-C. As such, the binding strength of N_2 on Ru SAs/N-C was stronger than that on Ru NPs/N-C. The strong binding of N₂ on Ru SAs/N-C indicated the facilitated adsorption of N₂, thus resulting in high activity of Ru SAs/N-C. To provide a theoretical insight into the reaction mechanism, we calculated the Gibbs free energy (G) for each step involved in the N_2 reduction at 0 V versus RHE on Ru_1-N_3 , Ru_1-N_4 , and Ru (101). As shown in Figure 4b and Figure S22 (Supporting Information), the variation in Gibbs free-energy (ΔG) from *NNH to *NNH₂ is 0.12 eV, which is more negative than that (0.60 eV) from *NNH to *NHNH for Ru₁-N₃ (Figures S23 and S24, Supporting Information). As such, the N₂ electrochemical reduction for Ru₁-N₃ undergoes the distal pathway rather than the alternating pathway. In addition, the reaction over $Ru_1 - N_4$ also experiences the distal pathway according to the ΔG of the partial elementary reaction intermediates (Figure 4b and

www.advmat.de

Figure 4. a) The N₂-TPD profiles of Ru SAs/N-C and Ru NPs/N-C. b) Free energy diagram of the N₂ electrochemical reduction with a distal pathway on $Ru_1 - N_3$, $Ru_1 - N_4$, and Ru (101). * represents an adsorption site.

ADVANCED SCIENCE NEWS _____ www.advancedsciencenews.com

In conclusion, Ru SAs/N-C has been demonstrated to serve as a highly efficient electrocatalyst for N₂ electrochemical reduction. At –0.2 V versus RHE, Ru SAs/N-C exhibited a FE of 29.6% for NH₃ production with partial current density of –0.13 mA cm⁻². Notably, the yield rate of Ru SAs/N-C reached 120.9 μ g_{NH3} mg⁻¹_{cat} h⁻¹, which was one order of magnitude higher than the highest value ever reported. This work provides a guideline for the generation of atomically dispersed uniform single atomic materials and paves a new avenue for further research in the application of single atomic catalysts toward N₂ electrochemical reduction.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

Z.G. and Y.L. contributed equally to this work. This work was supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, MOST of China (2014CB932700), NSFC (51601186, 21773288, and 21573206), Key Research Program of Frontier Sciences of the CAS (QYZDB-SSW-SLH017), Anhui Provincial Key Scientific and Technological Project (1704a0902013), Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXZY002), and Fundamental Research Funds for the Central Universities. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

 N_2 electrochemical reduction, NH_3 production, Ru single atoms, single atom catalysts

Received: June 2, 2018

- Revised: July 23, 2018
- Published online: August 10, 2018
- [1] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.
- [2] H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929.

www.advmat.de

- [3] V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, *Catal. Today* 2017, 286, 2.
- [4] S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen, J. Ye, *Adv. Mater.* 2017, *29*, 1701774.
- [5] X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Mater. Horiz. 2018, 5, 9.
- [6] C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183.
- [7] M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, *Nat. Chem.* **2012**, *4*, 934.
- [8] M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang, D. R. MacFarlane, *Nat. Commun.* **2016**, *7*, 11335.
- [9] D. Yang, T. Chen, Z. Wang, J. Mater. Chem. A 2017, 5, 18967.
- [10] C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Energy Environ. Sci. 2018, 11, 45.
- [11] I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy 2005, 30, 2487.
- [12] J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, *Science* **2018**, *360*, 873.
- [13] Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge, E. Skúlason, ACS Catal. 2016, 6, 635.
- [14] J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Nørskov, *ChemSusChem* **2015**, *8*, 2180.
- [15] T. J. Del Castillo, N. B. Thompson, J. C. Peter, J. Am. Chem. Soc. 2016, 138, 5341.
- [16] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.
- [17] B. M. Lindley, A. M. Appel, K. Krogh-Jespersen, J. M. Mayer, A. J. M. Miller, ACS Energy Lett. 2016, 1, 698.
- [18] V. Kordali, G. Kyriacou, Ch. Lambrou, *Chem. Commun.* **2000**, *17*, 1673.
- [19] R. Lan, S. Tao, RSC Adv. 2013, 3, 18016.
- [20] R. Lan, J. T. S. Irvine, S. Tao, Sci. Rep. 2013, 3, 1145.
- [21] S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1700001.
- [22] D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang, X.-B. Zhang, Adv. Mater. 2017, 29, 1604799.
- [23] M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550.
- [24] G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771.
- [25] Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, ACS Catal. 2018, 8, 1186.
- [26] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem., Int. Ed. 2017, 56, 2699.
- [27] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, *Science* **2008**, *319*, 939.
- [28] X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Angew. Chem., Int. Ed. 2006, 45, 1557.
- [29] T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri, L. Chen, X. Sun, *Adv. Energy Mater.* 2017, *7*, 1700020.
- [30] Y. Zheng, Y. Jiao, L. H. Li, T. Xing, Y. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2014, 8, 5290.
- [31] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. Dong, D. Chen, J. M. Tour, ACS Nano 2017, 11, 6930.
- [32] S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J.-B. Baek, L. Dai, Angew. Chem., Int. Ed. 2012, 51, 4209.
- [33] J. Yuan, J. Yang, H. Ma, C. Liu, *Microporous Mesoporous Mater.* 2016, 222, 202.